import p4tools as p4tRegions
regions of interest stuff
from p4tools.io import get_region_names
from matplotlib import pyplot as plt, rcParamsrcParams['image.origin'] = 'lower'regions = get_region_names()sorted(regions.roi_name.unique())['Albany',
'Atka',
'Bilbao',
'Binghamton',
'BuenosAires',
'Caterpillar',
'Cortland',
'Geneseo',
'Giza',
'Halifax',
'Inca_City',
'Inca_City_Ridges',
'Ithaca',
'Macclesfield',
'Manhattan2',
'Manhattan_Classic',
'Manhattan_Cracks',
'Manhattan_Frontinella',
'Oswego_Edge',
'Pisaq',
'Portsmouth',
'Potsdam',
'Rochester',
'Schenectady',
'Starburst',
'Troy',
'Wellington',
'unknown']
regions.query("roi_name=='Manhattan_Cracks'").describe().loc['mean', 'lat_IND':'lon_IND'].valuesarray([-86.25696154, 98.77399231])
regions.query("roi_name=='Halifax'").describe()| lat_IND | lon_IND | minimal_distance | lat_WORD | lon_WORD | MY | |
|---|---|---|---|---|---|---|
| count | 3.000000 | 3.000000 | 3.000000 | 3.0 | 3.0 | 3.0 |
| mean | -87.042933 | 72.417667 | 4.849353 | -87.0 | 72.3 | 29.0 |
| std | 0.001858 | 0.054604 | 0.245513 | 0.0 | 0.0 | 0.0 |
| min | -87.044200 | 72.356400 | 4.568739 | -87.0 | 72.3 | 29.0 |
| 25% | -87.044000 | 72.395900 | 4.761747 | -87.0 | 72.3 | 29.0 |
| 50% | -87.043800 | 72.435400 | 4.954755 | -87.0 | 72.3 | 29.0 |
| 75% | -87.042300 | 72.448300 | 4.989660 | -87.0 | 72.3 | 29.0 |
| max | -87.040800 | 72.461200 | 5.024566 | -87.0 | 72.3 | 29.0 |
lon = 103.901
lat = -85.401west = lon - 2
east = lon + 2north = lat + 0.1
south = lat - 0.1import mathimage_size = (600, 800, 3)lat, lon(-85.401, 103.901)
import folium
tiles='https://astro.arcgis.com/arcgis/rest/services/OnMars/MColorDEM/MapServer/tile/{z}/{y}/{x}'
crs = 'EPSG3857'
# crs = 'Simple'
# crs = 'EPSG3031'
m = folium.Map(location=[lat, lon], zoom_start=3, tiles=tiles, attr='usgs/esri', crs=crs)
mMake this Notebook Trusted to load map: File -> Trust Notebook