Regions

regions of interest stuff
import p4tools as p4t
from p4tools.io import get_region_names
from matplotlib import pyplot as plt, rcParams
rcParams['image.origin'] = 'lower'
regions = get_region_names()
sorted(regions.roi_name.unique())
['Albany',
 'Atka',
 'Bilbao',
 'Binghamton',
 'BuenosAires',
 'Caterpillar',
 'Cortland',
 'Geneseo',
 'Giza',
 'Halifax',
 'Inca_City',
 'Inca_City_Ridges',
 'Ithaca',
 'Macclesfield',
 'Manhattan2',
 'Manhattan_Classic',
 'Manhattan_Cracks',
 'Manhattan_Frontinella',
 'Oswego_Edge',
 'Pisaq',
 'Portsmouth',
 'Potsdam',
 'Rochester',
 'Schenectady',
 'Starburst',
 'Troy',
 'Wellington',
 'unknown']
regions.query("roi_name=='Manhattan_Cracks'").describe().loc['mean', 'lat_IND':'lon_IND'].values
array([-86.25696154,  98.77399231])
regions.query("roi_name=='Halifax'").describe()
lat_IND lon_IND minimal_distance lat_WORD lon_WORD MY
count 3.000000 3.000000 3.000000 3.0 3.0 3.0
mean -87.042933 72.417667 4.849353 -87.0 72.3 29.0
std 0.001858 0.054604 0.245513 0.0 0.0 0.0
min -87.044200 72.356400 4.568739 -87.0 72.3 29.0
25% -87.044000 72.395900 4.761747 -87.0 72.3 29.0
50% -87.043800 72.435400 4.954755 -87.0 72.3 29.0
75% -87.042300 72.448300 4.989660 -87.0 72.3 29.0
max -87.040800 72.461200 5.024566 -87.0 72.3 29.0
lon = 103.901
lat = -85.401
west = lon - 2
east = lon + 2
north = lat + 0.1
south = lat - 0.1
import math
image_size = (600, 800, 3)
lat, lon
(-85.401, 103.901)
import folium

tiles='https://astro.arcgis.com/arcgis/rest/services/OnMars/MColorDEM/MapServer/tile/{z}/{y}/{x}'

crs = 'EPSG3857'
# crs = 'Simple'
# crs = 'EPSG3031'
m = folium.Map(location=[lat, lon], zoom_start=3, tiles=tiles, attr='usgs/esri', crs=crs)

m
Make this Notebook Trusted to load map: File -> Trust Notebook