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Conda vs Anaconda vs 
Miniconda

• Questions to audience: 

• How many here use any conda-based system? 

• How many understand the differences between the 
different conda terms in the title of this slide? 

• Before we expunge/reinstall, let’s understand it 
better.



Conda vs Anaconda vs Miniconda (2)
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Conda also manages virtual envs
•If you only ever need one environment, you could stay 

with graphical Conda installer, however…

matplotlib

spiceypy

numpy

conda create -n py37 python=3.7 spiceypy matplotlib numpy 

…and all 
packages  
required 
for these.

py37 conda create -n py2 python=2  
python2_package

Use “conda activate <env-name>”  
to switch between environments.

Legacy Python:



My python package search tree
• First conda:  conda install <pkg_name> 

• The dependency resolver will tell if it would lead to downgrades of other packages, 
you can inspect and reject at this point. 

• What if a Python package is not available conda? 

• pip install pkg_name 

• NOTE: Always do conda activate <env_name> before this (or anything 
really). Because otherwise a different “pip” command might be used on your 
computer and install goes somewhere else. 

• Pip ALWAYS depends on current active conda environment (or PATH if no conda) 

• If you ever did “pip install” and then Python couldn’t find it, it didn’t install where 
you think it did.

• What if pkg not even on Pypi server? Find it on GitHub: 

• git clone <url_copied_from_GitHub && cd <cloned_repo> && pip install (-e) . 

• I use this mix for many years successfully.



Conda vs Anaconda vs 
Miniconda (3)

• So, in summary: 

• conda is the executable that manages packages (not only Python, 
e.g. HDF binaries, FORTRAN, OpenCV, GDAL libraries etc.) 

• “miniconda” is a minimum set of packages for proper operation of 
conda, installed into a “base”. Use this if you understand conda 
well. 

• “anaconda” is a meta-package with a huge list of scientific 
packages (dependencies) (Recommended for beginners) 

• Hence: after installing miniconda and executing “conda install 
anaconda”, you would have the same python env as 
somebody that DL-ed the Anaconda distribution.



Everyday conda (terminal) tips
• If you have installed it before, and it’s older than conda 4.6, remove and reinstall everything. 

• New version (now at 4.8.x) is much faster in adding a new package 

• Too many changes that make it better to delete “old cruft” 

• If you still have changed PATH changes that point to your conda install in your ba/c/tc-sh configs, 
remove it! 

• Call of “conda init <shell_name>” configures things correctly, adding an init section to config files. 

• Leaving the manual PATH change in can create problems. 

• Advise: Don’t use the initial conda “base” environment for general work. 

• Eventually some of your installs (or Anaconda, Inc.) will mess up something. 

• Always create a new default environment: 

• conda create -n py37 python=3.7 

• conda activate py37  

• Find packages: 

• conda search <package_name> 

• If list shows what you need: 

• conda install <package_name> (will also drag in dependencies)



Conda channels
• Channels are different 

locations/sources for 
packages. 

• By default, an env is 
pointed to the default 
channel, you can confirm 
like so: 

• The top-most channel has 
the highest priority for 
package searches.



Conda channels (2)
• What if you want to have one environment pointing 

to defaults and one to try out conda-forge? 

• -> ENV-dependent configuration! 

• Activate the env you want to configure, then: 

• conda config --env --add channels conda-forge 

• Good tip: Don’t mix channels within one env. And 
pin packages to be sure.



Pinning packages
• Because conda sometimes finds “better” packages 

at default, conda did sometimes mix from different 
channels. 

• To avoid this (catastrophic for gdal), pin packages 
per env to your desired channel: 

• conda config --env --add pinned_packages 
conda-forge::gdal



nb_conda_kernels
• If you are working mostly 

in Jupyter and (anticipate 
to) have more than one 
conda env, this is the 
most important conda 
package. 

• It finds your existing 
conda envs at every 
launch of a Jupyter 
server 

• It then offers kernel for 
each conda env in the list 

• JNotebook: find menu “Kernel-
>change kernel” 

• JLab: click on kernel name in the 
upper right



How to reinstall env in 5 min
• Even a “stable” env is rotting at some point 

• The trick is to have: 

• File with a list of your conda packages 

• File with a list of your pip packages 

• If you develop new packages: file with a list of your 
own package folders and GH installs 

• a (couple of) bash script(s)



How to reinstall env in 5 min(2)
• conda deactivate 

• ./reinstall_env.sh py37 3.7 

• conda activate py37 

• ./install_my_libs.sh


