
How to create and maintain 
a scientific Python 

environment using conda
or “How to completely wipe and reinstall your complete 

scientific Python stack in under 5 minutes” (if you have to)

this gistScripts at

K.-Michael Aye

ICYPPT 20211

https://gist.github.com/michaelaye/cd6c138338b542a487d4c5b78791e79c


Motivation
• Open Source science software is an extremely fast 

developing landscape 

• The best new tools are often only a quick install away 

• To "know Python" today also means to "know the available 
packages for your science domain and how to integrate 
them into your science environment" 

• "Conda" has been extremely helpful with this task 

• It allows you to quickly test out new packages without 
disturbing your "stable" environment.



Conda vs Anaconda vs Miniconda
• It's a bit of a word-jungle, so let's start with 

terminology to prevent confusion! 

• Anaconda is first the name of the company that 
created the "conda" tool (more next slides) 

• However, Anaconda is also the name of: 

• A Python science distribution targeted for 
beginners 

• The name of a meta-package (that lists other 
packages as requirement to be installed)

3



The conda executable
• Everything is centered around the conda executable. 

• It's a command line tool 

• even when you manage your environments via the 
Anaconda Navigator GUI, this tool is running in the back  

• Mostly used for managing Python things, but can do more: 

• conda also can install C/++/FORTRAN library dependencies 
for a given Python package (e.g. for SciPy, GDAL, OpenCV) 

• There are also a lot of R conda packages now

4



Conda tool (2)

• With conda you should never need admin/root 
access for installing Python 

• Why? Because all the libraries can be installed 
into a folder of your home space 

• Additional pip-installs will also only install in there 
as well (If used correctly! More on that later!)



Conda vs Anaconda vs Miniconda (2)

conda manages all  
of packages spiceypy

numpy

dependency

Metapackage 
Anaconda

matplotlib

dependencies

…

…

…

some 
basic 

packages

Miniconda

Standard conda package (grey)

Tool

Miniconda is a minimal set of  
pckgs, to be expanded by users  
that know what pckgs they need

Anaconda: best for beginners

6



A conda 
environment

Package

Package

Package

Package

Package

Package

Package

Package

Package

Package

Package

Anaconda 
(Collection)

conda create -n env_name python=3.8 pckg1 pckg2 ....

conda create -n env_name python=3.8 anaconda



Conda vs Anaconda vs 
Miniconda (3)

• So, in summary: 

• conda is the executable that manages packages (not only Python, 
e.g. HDF binaries, FORTRAN, OpenCV, GDAL libraries etc.) 

• “miniconda” is a minimum set of packages for proper operation of 
conda, installed into a “base”. Use this if you know which 
packages you need for your use case. 

• “anaconda” is a meta-package with a huge list of scientific 
packages (dependencies) (Recommended for beginners) 

• Hence: after installing miniconda and executing “conda install 
anaconda”, you would have the same python env as 
somebody that DL-ed the Anaconda distribution.

8



Mamba!
• New faster drop-in replacement for conda 

• In all conda commands you can replace "conda" by 
"mamba" if you have it installed. 

• You can install already a mamba-installed version 
of conda envs using prepared installers from here: 

• https://github.com/conda-forge/
miniforge#mambaforge

https://github.com/conda-forge/miniforge#mambaforge
https://github.com/conda-forge/miniforge#mambaforge


conda environments
• conda's MO is based on (virtual) environments 

• after installation, you have a "base" env. 

• if you still have an env named "root", I highly encourage you to wipe it all 
and reinstall 

• conda "suffered" from its own success: 

• rapid development led to breaking changes 

• these changes sometimes left incompatible remnants on your system 

• same versions of pckgs are hardlinked between different envs, if possible 

• saves 50-70 % space, in my tests

10



Do you need envs?
• tl;dr : Yes 

• Advanced (Python) hacking is NOT the criterium for using more than one env 

• Not even "advanced Python usage" is. 

• Piece of mind is the best criterium 

• ease of use is a supporting argument 

• Why? Because the base environment is also the base for conda's 
functionality 

• That means, messing it up can render conda dysfunctional 

• -> reinstall of the whole ana/mini conda system might be required 

• While messing up one env (that isn't "base") only requires recreating the 
env

11



Creating envs
conda create -n py37 python=3.7 spiceypy matplotlib numpy 

matplotlib

spiceypy

numpy

…and all 
packages  
required 
for these.

py37

conda create -n py2 python=2  
python2_package

Use “conda activate <env-name>”  
to switch between environments.

Legacy Python:

12



My python package search tree
• First conda:  conda install <pkg_name> 

• The dependency resolver will tell if it would lead to downgrades of other packages, you can 
inspect and reject at this point. 

• What if a Python package is not available conda? 

• pip install pkg_name 

• NOTE: Always do conda activate <env_name> before this (or anything really). 
Because otherwise a different “pip” command might be used on your computer and 
install goes somewhere else. 

• Pip ALWAYS depends on current active conda environment (or PATH if no conda) 

• If you ever did “pip install” and then Python couldn’t find it, it didn’t install where you think 
it did. 

• Always watch what pip is doing! It has a summary of changes at the end.

• What if pkg not even on Pypi server? Find it on GitHub: 

• git clone <url_copied_from_GitHub && cd <cloned_repo> && pip install (-e) . 

• I use this mix for many years successfully.... however  ===>

13



The conda-pip frenemies
• pip is good; it checks dependencies as well, and makes sure that you get the 

dependencies AS DEFINED BY THE PACKAGE AUTHOR 

• pip is even recommended over "python setup.py install" for local (GitHub) 
package folders, because it keeps good records for uninstallation

• "cd package_folder; pip install ."  # note the dot! 

• However, pip does NOT tell conda what it did. 

• If a package author says it requires a lib version lower than you have, pip will 
replace it with the older version 

• While conda still thinks the newer one is installed! 

• Lemma: NEVER run pip in the base env 

• Corollary: You need envs! (proven theorem, or something like that...)

14



What if?
• So what do you do if pip replaced one library/package 

with an older version? 

• 1. pip uninstall pck_name 

• 2. conda install pck_name --force-reinstall 

• If pip replaced several packages, i'd rather vote for 
env replacement 

• the dependency tree might be compromised 
beyond repair by conda

15



Summary of everyday conda tips
• If you have installed it before, and it’s older than conda 4.6, remove and reinstall everything. 

• New version (now at 4.8.x) is much faster in adding a new package 

• Too many changes that make it better to delete “old cruft” 

• If you still have changed PATH changes that point to your conda install in your ba/c/tc-sh configs, 
remove it! 

• Call of “conda init <shell_name>” configures things correctly, adding an init section to config files. 

• Leaving the manual PATH change in can create problems. 

• Advice: Don’t use the initial conda “base” environment for general work. 

• Eventually some of your installs (or Anaconda, Inc.) will mess up something. 

• Always create a new default environment: 

• conda create -n py37 python=3.7 

• conda activate py37  

• Find packages: 

• conda search <package_name> 

• If list shows what you need: 

• conda install <package_name> (will also drag in dependencies)

16



Keep your shell config clean
Below should be all there is related to conda in your shell 

config file (like .bashrc or similar)

Use this if you don't like the auto-activated environment:
conda config --set auto_activate_base false17



Conda channels
• Channels are different 

locations/sources for 
packages. 

• By default, an env is 
pointed to the default 
channel, you can confirm 
like so: 

• The top-most channel has 
the highest priority for 
package searches.

18



Conda channels (2)
• What if you want to have one environment pointing 

to defaults and one to try out conda-forge? 

• -> ENV-dependent configuration! 

• Activate the env you want to configure, then: 

• conda config --env --add channels conda-forge 

• Good tip: Don’t mix channels within one env. And 
pin packages to be sure.

19



Pinning packages
• Because conda sometimes finds “better” packages 

at default, conda did sometimes mix from different 
channels. 

• To avoid this (catastrophic for gdal), pin packages 
per env to your desired channel: 

• conda config --env --add pinned_packages 
conda-forge::gdal

20



nb_conda_kernels
• If you are working mostly 

in Jupyter and (anticipate 
to) have more than one 
conda env, this is the 
most important conda 
package. 

• It finds your existing 
conda envs at every 
launch of a Jupyter 
server 

• It then offers kernel for 
each conda env in the list 

• JNotebook: find menu “Kernel-
>change kernel” 

• JLab: click on kernel name in the 
upper right

21



How to reinstall env in 5 min
• Even a “stable” env is rotting at some point 

• The trick is to have: 

• File with a list of your conda packages 

• File with a list of your pip packages 

• If you develop new packages: file with a list of your 
own package folders and GH installs 

• a (couple of) bash script(s)

22



How to reinstall env in 5 min(2)
• conda deactivate 

• ./reinstall_env.sh py37 3.7 

• conda activate py37 

• ./install_my_libs.sh

23



Today's recommendation

• Install a mamba-forge installer 

• It comes with mamba AND pre-configured 
conda-forge only channel 

• https://github.com/conda-forge/
miniforge#mambaforge

https://github.com/conda-forge/miniforge#mambaforge
https://github.com/conda-forge/miniforge#mambaforge

